RECRUTEMENT ━
INCLUSION + DIVERSITÉ
Les ressources humaines (RH) jouent un rôle essentiel dans la mise en place d’un processus d’embauche transparent et équitable qui tient compte de la diversité et de l’inclusion des femmes+. Les RH collaborent avec les intervenants dans le but d’évaluer les besoins et de déterminer les rôles, en utilisant des descriptions de postes inclusives, des rémunérations équitables et des entrevues impartiales. Cela favorise un environnement de travail positif qui renforce les groupes de femmes sous-représentés dans le secteur technologique, leur permettant ainsi de saisir en toute confiance les possibilités d’emploi et de contribuer à une main-d’œuvre diversifiée et prospère.
Avant toute entrevue, les RH utilisent des méthodes de sélection telles que l’examen des curriculum vitæ et des appels téléphoniques, en veillant à ce que les évaluations soient neutres sur le plan du genre afin d’éviter toute discrimination à l’encontre des candidates femmes+. Les RH suivent ensuite un processus structuré de présélection selon des critères, en menant différents types d’entrevues et d’évaluations à l’aide de critères cohérents et objectifs. Cette approche inclusive attire des talents divers et augmente la motivation.
La recherche souligne le manque de confiance, en particulier dans les domaines techniques, qui conduit les femmes à refuser des emplois pour lesquels elles sont qualifiées. L’équité entre les sexes de même que les pratiques de recrutement équitables visent à éliminer les préjugés sexistes et à garantir l’égalité des chances pour les personnes candidates.
Les descriptions de poste sont la pierre angulaire du processus d’embauche, facilitant la communication entre les RH et les personnes candidates tout en garantissant une évaluation équitable et non sexiste des exigences et des responsabilités du poste. Cette approche permet de lutter contre les obstacles liés au genre, tels que les stéréotypes, la sous-représentation, les disparités salariales et les possibilités limitées d’avancement de carrière pour les femmes. L’utilisation d’un langage non sexiste et d’un ton neutre dans les offres d’emploi permet aux personnes candidates d’évaluer leur aptitude en fonction de leurs compétences et de leurs caractéristiques plutôt que de leur genre, ce qui élimine les préjugés et favorise des candidatures éclairées.
Si les outils d’IA sont utilisés pour filtrer les candidatures, il convient d’être prudent afin d’éviter les préjugés sexistes. L’IA influencée par les normes de genre peut désavantager les candidates femmes+. La reconnaissance des expériences individuelles est primordiale, compte tenu de la diversité des parcours professionnels. Par conséquent, la présélection et les entrevues doivent tenir compte de l’ensemble des antécédents professionnels des personnes candidates, au-delà de leur curriculum vitæ.
Reformuler les phrases afin d’éliminer les suppositions relatives au genre et les formulations fondées sur le genre.
Par exemple, des attributs comme l’entêtement, un caractère dominant, la confiance en soi, le dynamisme et l’esprit de compétition sont associés à des stéréotypes masculins, tandis que des attributs comme l’empathie, la douceur, la politesse, la prévenance et la tolérance sont plutôt associés à des stéréotypes féminins. Il s’agit également d’éviter d’utiliser inutilement des attributs superlatifs pouvant être connotés sur le plan du genre.
Inclure l’avis de confidentialité des données de la personne candidate. Il est particulièrement important d’expliquer aux personnes candidates défavorisées, telles que les femmes+, comment et pourquoi leurs données personnelles seront utilisées, notamment aux fins de l’exercice de recrutement, et combien de temps elles seront conservées.
ABCD Company
Job Title: AI Developer/Engineer
Hours: Full-time
Location: Hybrid (Office location: Montréal)
Compensation: $85,453 - $89,235
Company:
At ABCD Company, we are at the forefront of innovation, utilizing cutting-edge technologies to shape the future of AI-driven solutions. As a leading player in the tech industry, we are committed to leveraging Artificial Intelligence to solve complex challenges and revolutionize various sectors. Our core value “Thrive together” means that we learn from each other and grow from it. We believe at ABCD you will not only find a great place to work, but also a great place to grow, learn new skills and develop your career.
Job Purpose:
As an AI Engineer at ABCD Company, your primary objective is to develop, program, and train complex networks of algorithms to enable AI systems to function like human brains. This role requires experience in software development, programming, data science, and data engineering.
You will be responsible for building, testing, and deploying AI models using various programming algorithms. Additionally, you will collaborate with team members, create and manage the AI development process and infrastructure, conduct statistical analysis, automate infrastructure for the data science team, and transform machine learning models into APIs to interact with other applications. You will get the opportunity to build relationships with our valued customers’ technical teams, make an impact on our products, and foster team spirit in our company culture.
Job Duties:
- Develop, program, and train complex networks of algorithms for AI systems.
- Build, test, and deploy AI models using various programming algorithms.
- Coordinate with team members to ensure successful AI model development.
- Create and manage the AI development process and infrastructure of products.
- Conduct statistical analysis and interpret results for decision-making purposes.
- Automate important infrastructure for the data science team.
- Develop infrastructures for data transformation and ingestion.
- Build AI models that make predictions based on large quantities of data.
- Explain the usefulness of AI models to a wide range of individuals within the organization, including collaborators and product managers.
- Transform machine learning models into APIs to interact with other applications.
Required Qualifications:
- Education: Bachelor's degree in Computer Science, Data Science, or a related field.
Experience:
- Proven experience in software development and programming with a portfolio and/or GitHub profile.
- Solid understanding of statistics, probability, and linear algebra.
- Experience with programming languages such as C++, Java, R, and Python.
Knowledge and Skills:
- Strong problem-solving skills.
- Business knowledge and understanding of industry trends.
- Communication skills to effectively convey complex concepts.
- Ability to collaborate effectively with cross-functional teams.
- Critical thinking skills to evaluate and improve AI models.
Preferred Qualifications:
- Master's degree or higher in Computer Science, Data Science, or a related field.
- Experience in developing and deploying AI models in a production environment.
- Familiarity with machine learning frameworks and libraries.
- Knowledge of big data technologies and tools.
Working Conditions:
As an AI Engineer at ABCD Company, you will primarily work in a hybrid model, combining remote work with in-office collaboration. The office location is in Montréal. You can expect a dynamic and innovative work environment that fosters teamwork and encourages professional growth.
Please note that this job description provides a comprehensive overview of the responsibilities and qualifications for the AI Engineer position at ABCD Company. The actual duties and requirements may vary based on specific projects and organizational needs.
Diversity, Inclusion and Equity at ABCD
At ABCD Company, we believe in fostering an inclusive and diverse workplace. We value and embrace individuals from all backgrounds, perspectives, and experiences. We are committed to providing equal opportunities and promoting diversity at every level of our organization. We encourage applicants from underrepresented groups and strive to create a work environment that celebrates diversity, inclusion, and equity.
Candidate Data Privacy Notice
At ABCD Company, we take the privacy and security of your personal data seriously. This Candidate Data Privacy Notice outlines how we collect, use, process, and protect the personal information you provide during the recruitment process. Please read this notice carefully to understand our practices regarding your data.
Inclure le salaire ou la fourchette de rémunération dans la description du poste. La majorité des femmes+ sont moins bien payées que les hommes, en particulier dans le secteur des technologies. Pour faire preuve de transparence et pour éviter les disparités salariales, ajoutez des renseignements sur le salaire dans la description.
Inclure des énoncés sur la diversité et l’inclusion.
information Collected
As part of the recruitment process, we may collect the following categories of personal data:
- Contact information (name, address, email, phone number)
- Educational background and employment history
- Curriculum Vitae (CV) or resume, cover letter, and other application materials
- Professional qualifications and certifications
- References and interview notes
- Results of any pre-employment assessments
Purpose of Data Collection
We collect and process your personal data solely for recruitment purposes, including but not limited to:
- Assessing your qualifications, skills, and suitability for the position applied for
- Communicating with you during the recruitment process
- Conducting interviews and reference checks
- Complying with legal and regulatory requirements
- Improving our recruitment and selection process
Data Retention
We will retain your personal data for as long as necessary to fulfill the purposes outlined in this notice, or as required by law. If your application is unsuccessful, we may retain your data to consider you for future job opportunities, unless you request otherwise.
Data Sharing
Your personal data will be accessed only by authorized personnel involved in the recruitment process. We may share your information with third-party service providers assisting us with recruitment activities, but only to the extent necessary.
Data Security
We implement appropriate technical and organizational measures to protect your personal data from unauthorized access, disclosure, alteration, or destruction. Despite our efforts, no data transmission over the internet can be guaranteed to be completely secure. Therefore, we cannot guarantee the absolute security of your data.
Your Rights
As a candidate, you have certain rights regarding your personal data, including:
- Access: You may request access to the personal data we hold about you.
- Correction: If you believe any information we hold is inaccurate or incomplete, you can request corrections.
- Erasure: You can request the deletion of your personal data under certain circumstances.
- Objection: You have the right to object to the processing of your personal data in certain situations.
FAIR CHANCE ORDINANCE (FCO)
The purpose of this Fair Chance Ordinance (FCO) is to promote fair hiring practices and equal employment opportunities for all individuals, including those with prior criminal records. The intent is to reduce discrimination against applicants with criminal histories, allowing them an opportunity to be considered fairly based on their qualifications and skills, rather than solely on their past criminal history. This ordinance aims to contribute to the rehabilitation and reintegration of formerly incarcerated individuals into society, fostering a more inclusive and just workforce.
applicability
This FCO applies to all employers within the jurisdiction of Montréal, QC, Canada, regardless of size or industry. It covers the entire hiring process, from job advertisements and applications to interviews, background checks, and final hiring decisions.
prohibition of criminal history inquiry
Employers covered under this ordinance shall not inquire about an applicant's criminal history or conduct a background check until after a conditional offer of employment has been made. This prohibition applies to all job positions, except those where state or federal law mandates a background check for certain positions.
individualized assessment
Upon receiving a conditional offer of employment, employers may inquire about an applicant's criminal history. However, any consideration of an applicant's criminal record must be performed using an individualized assessment. The assessment shall take into account the nature and gravity of the offense, the time elapsed since the conviction, and the relevance of the offense to the job position. Employers must not have a blanket policy that automatically disqualifies candidates with criminal records.
notification to applicants
If an employer decides to take adverse action based on an applicant's criminal history, they must provide the applicant with a written notification that includes the following:
- The specific conviction(s) that led to the adverse action.
- A copy of the background check report, if applicable.
- A notice of the applicant's right to challenge the accuracy of the criminal history information.
- Information on how the applicant can provide evidence of rehabilitation or mitigating circumstances.
exemptions
This FCO does not apply to positions where state or federal law requires the consideration of an applicant's criminal history or prohibits the employment of individuals with specific criminal convictions due to safety or security concerns.
This Fair Chance Ordinance seeks to level the playing field for job applicants with criminal histories, enabling them to compete fairly for employment opportunities and contribute positively to society through gainful employment. It upholds the principles of fairness, inclusivity, and rehabilitation, aiming to create a more just and compassionate community for all.
ADRVERTISING ━ BEST PRACTICES
En tenant compte des exigences du poste, les RH peuvent ainsi déterminer la stratégie de recrutement la plus efficace, en prenant en considération des facteurs tels que le poste, la culture de l’entreprise et les ressources disponibles. Le service décide de publier l’offre d’emploi en interne, en externe ou en combinant les deux, tout en sélectionnant soigneusement les canaux et les plateformes en vue de promouvoir l’offre d’emploi. Les plateformes diverses, y compris les sites de talents alternatifs pour les femmes et les queers, les canaux universitaires pour les postes de premier cycle, les communautés et les organisations non gouvernementales liées aux droits des femmes et des queers, à l’éducation et aux centres d’intérêt dans les domaines de la technologie et des sciences, technologies, ingénierie et mathématiques (STIM), devraient être incluses dans la stratégie d’annonce.
- Imagerie: Prendre conscience des images et des éléments visuels utilisés dans l’offre d’emploi. Viser la diversité et l’inclusion en présentant des personnes d’identités de genre, d’origine et d’appartenance ethnique différents.
- Titres de poste: Mettre l’accent sur les compétences et l’expérience requises pour le poste plutôt que sur des traits ou caractéristiques ayant une connotation de genre au moment de rédiger la description du poste. Il est préférable de choisir des termes neutres qui décrivent objectivement le poste et les responsabilités.
- Langage: Utiliser des termes inclusifs comme « vous », « personnes candidates » plutôt que les pronoms seuls comme « il » ou « elle ».
- Considérations: Diffuser l’information sur les plateformes, les sites d’emploi ainsi que les communautés qui sont connus pour attirer des personnes de différentes identités de genre. Dans le cas d’une collaboration avec des conseils en recrutement de cadres, il convient de porter attention à leur processus et à leur formation afin d’éviter les préjugés.
Bibliographie
- Bortz, D. (2019, August 16). Can blind hiring improve workplace diversity?. SHRM. https://www.shrm.org/hr-today/news/hr-magazine/0418/pages/can-blind-hiring-improve-workplace-diversity.aspx
- Canada Research Chairs. (2012, November 29). Creating an Equitable, Diverse and Inclusive Research Environment: A Best Practices Guide for Recruitment, Hiring and Retention. Government of Canada, Industry Canada, Canada Research Chairs. https://www.chairs-chaires.gc.ca/program-programme/equity-equite/best_practices-pratiques_examplaires-eng.aspx
- Collier, D., & Zhang, C. (2016, October 1). Can we reduce bias in the recruiting process and diversify pools of candidates by using different types of words in job descriptions?. Cornell University. https://ecommons.cornell.edu/handle/1813/74363
- Erath, J. (2023, August 4). The gender gap in Tech...let’s talk about it. ironhack.com. https://www.ironhack.com/uk/en/blog/the-gender-gap-in-tech-let-s-talk-about-it
- Fuller, J., Raman, M., et al. (October 2017). Dismissed By Degrees. Published by Accenture, Grads of Life, Harvard Business School. https://www.hbs.edu/managing-the-future-of-work/Documents/dismissed-by-degrees.pdf
- Gaucher, D., Friesen, J., & Kay, A. C. (2011). Evidence that gendered wording in job advertisements exists and sustains gender inequality. Journal of Personality and Social Psychology, 101(1), 109–128. https://doi.org/10.1037/a0022530
- Glicksman, E. (2020, August 27). Have you seen these gender biases during job interviews?. SHRM. https://www.shrm.org/resourcesandtools/hr-topics/talent-acquisition/pages/have-you-seen-these-gender-biases-during-job-interviews.aspx
- Global gender gap report 2022. (2022). World Economic Forum. https://www.weforum.org/reports/global-gender-gap-report-2022/digest/
- Guest. (2018, January 23). How can job descriptions be more gender neutral?. Undercover Recruiter. https://theundercoverrecruiter.com/job-descriptions-gender-neutral/
- Kanij, T., Grundy, J., McIntosh, J., Sarma, A., & Aniruddha, G. (2022). A new approach towards ensuring gender inclusive SE job advertisements. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS). https://doi.org/10.1109/icse-seis55304.2022.9793874
- Katty Kay, C. S. (2015, August 26). The confidence gap. The Atlantic. https://www.theatlantic.com/magazine/archive/2014/05/the-confidence-gap/359815/
- Knight, R. (2018, July 24). 7 practical ways to reduce bias in your hiring process. Harvard Business Review. https://hbr.org/2017/06/7-practical-ways-to-reduce-bias-in-your-hiring-process
- LinkedIn Corporate. (n.d.). LinkedIn releases new report showcasing how gender impacts the candidate journey. LinkedIn releases new gender insights report. https://news.linkedin.com/2019/January/linkedin-releases-2019-gender-insights-report
- Ong’ang’a, C., & Donville, E. (2022, March 9). Illegal interview questions. Faculty of Arts News. https://arts.ucalgary.ca/news/illegal-interview-questions
- Sexual harassment and the gender wage gap. (2022). National Partnership for Women & Families. https://nationalpartnership.org/report/sexual-harassment-gender-wage-gap/
- Tabassum, N., & Nayak, B. S. (2021). Gender stereotypes and their impact on women’s career progressions from a managerial perspective. IIM Kozhikode Society & Management Review, 10(2), 192–208. https://doi.org/10.1177/2277975220975513
- The gender pay gap: Pay gap in Canada: The Facts. Canadian Women’s Foundation. (2022, December 23). https://canadianwomen.org/the-facts/the-gender-pay-gap/
- UNDP (United Nations Development Programme). (2020). 2020 Gender Social Norms Index (GSNI). UNDP (United Nations Development Programme). New York. https://hdr.undp.org/system/files/documents/hdperspectivesgsnipdf_1.pdf
- Women in male-dominated industries and occupations: Quick take. (2023). Catalyst. https://www.catalyst.org/research/women-in-male-dominated-industries-and-occupations/ Wynn, A., & Correll, S. (2017). Gendered perceptions of cultural and skill alignment in technology companies. Social Sciences, 6(2), 45. https://doi.org/10.3390/socsci6020045